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LElTER TO THE EDITOR 
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Abstract. Dynamics of the chemical reaction model introduced by Fichthom =I nl is 
discussed along the lines of our previous work. We find that the steady-state reaction rate 
is reached as l/& in Euclidean dimension d = 1 and d = 2 is the marginal dimension. The 
distinction made between the segregation regime and the saturation regime is recovered 
for the transient regime. 

There has been a good deal of interest recently in the study of kinetic models for 
surface reactions. These models are an important class of problems in statistical physics 
in which dynamical behaviour clearly departs from that expected in a mean-field 
theory. Also the study ofthese oversimplified models may help to elucidate the complex 
behaviour of actual catalytic reactions on surfaces. For review articles in the field, see 
[l, 21. A case in point is the model of Fichthom, Gulari and Ziff (FGZ) [3] for 
heterogeneous catalytic surface reactions. It belongs to a class of monomer-monomer 
reactions on a saturated surface and exhibits a bistability transition [3-SI. In a recent 
publication Clement et a1 [6]  have solved the problem exactly in the steady state, and 
they have shown that the transition is controlled by the desorption probability, the 
Euclidean dimension and the finite size of the substrate. Furthermore, it has been 
shown that a self-organization of reactants called segregation is present in dimensions 
lower than two. In this letter, we propose to pursue the study and we solve exactly 
the problem of the approach to the steady state. We show that a slowing down of the 
reaction occurs as a consequence of the growth of domains and that a dynamical 
transition to a poisoned state may occur before a reactive steady state is reached. 

The FGZ model is of the Langmuir-Hinshelwood type 

A + V G A s  ( la)  

B + V S B B s  ( Ib )  
As + Bs -f 2 V +  ABT. ( l e )  

Here A and B are gas phase reactants which are adsoibed on the vacant sites V of 
the surface. When two unlike adsorbed species are nearest neighbours they interact 
and both vacant sites are filled by A or B with equal probability. The control parameter 

11 Present address: Laborataire de Physique Statistique. 24 me Lhamond, 15005 Pans, France. 
7 To whom correspondence should be sent. 
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of the dynamical system is the probability p that an adsorbed species desorbs to be 
replaced by either A or B with equal probability. This model has been studied by 
Monte Carlo simulations [3,4]: it has been found that at low p the system stays in a 
nearly non-reactive state associated with a nearly complete coverage by a single species 
(poisoning). However, for finite p there exists a finite probability for a Bs (A,) island 
to grow on an As ( E , )  covered surface and the system may flip towards the other 
poisoned state (bistability). A mean-field treatment of this model [SI reproduces the 
bistability transition. We have shown [6] that this reaction-limited kinetic model is 
amenable to an exact treatment through a master equation of the probability P ( { z } )  
of a given configuration { z ] .  We define a state variable z, such that zi = 1 if the site is 
occupied by A, z, = -1 if occupied by B. The equal-time correlation function m, = 

(2) 

This equation is an exact consequence of the master equation [ 6 ] .  In ( 2 )  D =  1/2d is 
an effective diffusion constant where d is the space dimension, a denotes the nearest 
neighbours and the reaction probability Q(t )  is related to the nearest-neighbour 
correlation function, 2Q(r) = 1 - m,(t) .  One finds for the steady statet: 

( 1 / N )  & (zjzj+,) obeys 

= 2DAm,(,, - 2pm,(t)  -2DQ(t) 1 a-., + 2(2Q( t )  +p)a , , , .  
01 

Q =- 1 l - p F ( L , p )  
Is 2 l + ( l - p ) F ( L , p ) / 2  

where 

(3) 

In (4), N = Ld is the number of atoms on the lattice of size L. The saturation parameter 
A,, = ( NA - NS)*/  N 2 ,  tums out to be 

( 5 )  NA,. = Nm,=o= 1 f QJp. 

This treatment is valid for all dimensions. For d 3 3, mean-field behaviour [5] is 
recovered. For d S 2 a non-trivial fluctuation-controlled behaviour is found. Depending 
on the value of p, two regimes may he singled out for F and thus for Q,, and AsS. 

(i) For p < p c  where p .  is a cross-over value, the sum in (4) is dominated by its 
first term and F = I/ Np. 

(ii) For 1 > p > p .  one can replace the sum by an integral: 

( 6 a )  

and 
1 

27r 
d = 2 :  F - 0.056 --In p 

In the first regime the system is saturated (i.e. As,= l), while in the second there is a 
segregation over domains of size 1 < A  < L. 

t In this non-equilibrium model the adsorption step is reversible whereas the reaction step is not. The finite 
desorption probability amounts to a mining which allows a steady state to form. In this respen the model 
differs from the monomer-monomer model in which the reaction step is nvenible and the adsorption step 
is not, this model has been studied by ben-Avraham el a1 [71. 
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We will now show that the transition from segregated ( p  > p J  to saturated ( p  < p c )  
affects the way the system relaxes to steady state. We give analytic arguments supported 
by simulations. We start with the equation of motion for the correlation function (2). 
Taking the Laplace transform rir,(s) of m,( f )  one gets 

2rirq(s) [ p + - + - x  2" :,( 1-cos- 231 
Ns N (7) 

where the initial conditions enter in m,(f =O). This leads to 

'(') =; 2 + (1 -p*)F(L, p*)  2[2+ (1 -p*)F(L, p * ) ]  
1 I-PF(L,P*) - 1 

( 8 )  
m,(t = 0) cos(2rrqq,/L) 

x; p* + ( l / d )  Zj [I - cos(2rrqj/L)] 

where p* = p + s/2. For a random initial condition m,( f = 0) = I /  N. A central role is 
played by the function @ = F(L,p*) .  From now on we deal with the transient regime, 
i.e. with time much lower than p- ' .  In this case, p* s /2  and 4 = F(s/2) and we see 
by analogy with the results of [4] that we have two limiting regimes as well. For 
intermediate values of the desorption parameter, i.e. p > pc ( po  is the cross-over value 
of equations (a)), we obtain the segregation regime and: 

- ~~ 

A ( f ) = F  4 di (90) 
and 1 thus Q( f )  = - 1 

Ji in d = 1: &s)=x 

d =2, is the marginal dimension and the limiting regime (s In s)-' is, in practice, hardly 
accessible. Note that we rather tested on simulation an intermediate regime where the 
logarithmic term is smaller than 2.16. In this case the time dependence is: 

Al.\-,?1)77 .on?, 1.. * 
~ \ ' , - " . - ' " - " . " L " L 1 '  

The slowing down of the dynamics is mainly due to the occurrence of a segregation 
scale. The second regime is observed for smaller desorption parameters, i.e. for p < p c .  
In this case the early time is a segregated regime since s > p ,  but for longer time 
( f  > p ; ' )  we have a sharp transition to a poisoned regime since the leading value of 
@ = 2/ Ns, therefore: 

Q ( s )  = N I 2  thus Q ( f ) = O  and A ( f ) = l .  

This poisoned regime will last until the population is renewed, i.e. for time scales of 
the order of p-' .  

Behaviour of the sort we have found is illustrated in figures I(a) and l (b)  on which 
we have plotted Q versus time (in Monte Carlo steps) and A versus time for values 
nfg  ~ b n v e  1.4 be!ow pc  !ogp?her wi!h ?he theoretics! reo=!!% fclr d = 1 TIwe simc!i?icm 
have been performed for an L = 256 lattice, thus p .  = 3 x lo-' and 1, = 1.6 x lo4. Figure 
2 illustrates the same behaviour for d = 2 for the reaction rate Q ( f ) .  We have taken a 
64~64 la t t i ce t  for which p,=8.2X10-5 and 1,=6.1 XIO'. 

t Note that at p E < p <  1 the integral approximates the sum in (4) only far large L 
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Figure 1. Time evolution of ( a )  the reaction rate Q ( r )  and ( b )  the saturation parameter 
A(I), for d = l  and L=256. (0): p = O . 3 9 ~ 1 0 ~ ~ ,  (x): p=O.39xlO-'  and (0): p= 
0.39xIO-'. Solid line: Q(I)=(I/J;;i)A(I)=(I+4Jil;;)/L. 

A central result of our previous investigations [6] was a simple universal scaling 
with the number of sites N = Ld. At steady state N F  and Ass depend only on a reduced 
variable X : X =  Np"I ( d =  l),  X =  Np ln( l /p)  ( d  =2) .  This result arises from the 
simple dependence of 0" as a function of E Here, we also expect universal behaviour 
of N Q ( f )  and A ( t ) .  This is shown in figure 3 on which we have plotted the results of 
simulations for d = 1 and for various lattice sizes L and corresponding values of p 
below and above p c ,  as Qt versus f / L 2  curves for different sizes collapse on a master 
curve. 

Calculations proceed along the same lines for other initial conditions. For example, 
for an initially saturated system with p > pc we have m,(r = 0) = 6,. Thus for d = 1 
the leading term is Q(s)=Zp/s& and thus Q ( t ) = 4 p m .  Note that now Q ( f )  
depends on p.  In figure 4 we compare the results of simulations for two values of p 
with the predicted limiting behaviour. 
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Figure 2. Reaction rate as a function of time for d = 2  and L=64.  (0): p=O.I8x IO-’, 
(x): p=O.l8xIO-‘, (0): p=O.l8xlO~’. Solid line: Q(1)=0.377-0.O211~t. 

6Q?o .O I 
I I , -.%-I 

1 0’ 1 02 Id 1 o4 
time / souare leneht ( a .  U. ) 

Figure 3. Reaction rate as a function of time platted as Q(t)L versus llL2 in d = 1 for 
X=16(uppercurve), X = S  (intennediatecurve)andX=1.6 (Iowercurve). (0) L=218, 
(x): L=256, (0):  L=S12.  

In conclusion, we have seen how spontaneous spatial organization of reactants 
may change the dynamics of the chemical reaction of [3]. The study of the reaction-rate 
Q(r) reflects this organization. For example, in d = 1 and from random initial conditions 
where Q starts from a maximum value, the reactive steady state is approached at an 
early stage via a slowing down of the reaction rate; as fi; as segregation into domeins 
occurs. For desorption lower than a cross-over value pc  the growth of domains follows 
the same dynamics until the size of the system is reached and we get to a poisoned 
state for a time typically equal to the inverse of this cross-over desorption rate. The 
Euclidean dimension d = 2 is the marginal case and Q( f) has a complicated behaviour 
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Figore 4. Approach of the steady state from an initially saturated state. Reaction rate as 
afunctianoftimeford=l and L=256. (0):p=0.39~10~',(x):p=O.39~1O~'and(O): 
p = 0.39 x IO-! Solid line: Q = 4 p m .  

as a result of the mesoscopic segregation. For d = 3, the reaction rate is constant for 
sufficiently large samples. 

We believe that this general sort of behaviour is more general than the model in 
[l]. For example, in the simulations of Meakin and Scalapino [8] similar effects were 
found for the case where desorption is absent and poisoning always occurs. Experi- 
mental verification of these effects would be extremely interesting. 

The Groupe de Physique des Solides and the Laboratoire d'Acoustique et d'Optique 
des Solides are associated with the CNRS. LMS is supported in part by US NSF grant 
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